Ethylene production by growing and senescing pear fruit cell suspensions in response to gibberellin.

نویسندگان

  • R Ben-Arie
  • I B Ferguson
چکیده

A pear (Pyrus communis L. cv Passe Crassane) cell suspension was used as a model system to study the influence of gibberellin on processes related to fruit ripening. Growth of the cell cultures was inhibited and their loss of viability was accelerated when 0.5 millimolar gibberllic acid (GA(3)) was added to suspensions at two stages of cell development, namely, growth and quiescence. Cell respiration rate was unaffected up to 2 millimolar GA(3) but ethylene production, both basal and 1-aminocyclopropane-1-carboxylic acid-induced, was inhibited at all stages of cell development. However, the degree of inhibition decreased as the cell cultures aged. The site of ethylene inhibition by GA(3) appeared to be related to the ethylene-forming enzyme. The coincident acceleration of cell senescence and inhibition of ethylene production indicate that the pear cell suspension cannot serve as an analogous model for studying the mode of action of gibberellin in delaying ripening and senescence of fruits in its entirety, although certain specific effects might be relevant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of genes encoding cell wall modifying enzymes is induced by cold storage and reflects changes in pear fruit texture.

Preclimacteric 'Rocha' pears stored under chilling conditions, had a larger increase of ACO (1-aminocyclopropane-1-carboxylate oxidase) activity and softened faster than those treated with ethylene. Non-treated fruit did not ripen or soften, acquired a rubbery texture, and showed barely detectable levels of ACO activity. The transcript accumulation of seven genes encoding cell wall modifying en...

متن کامل

Ethylene production by auxin-deprived, suspension-cultured pear fruit cells in response to auxins, stress, or precursor.

Auxin-deprived, mannitol-supplemented, suspension-cultured pear (Pyrus communis L. Passe Crassane) fruit cells produce large quantities (20-40 nanoliters ethylene per 10(6) cells per hour) of ethylene in response to auxins, CuCl(2) or 1-amino-cyclopropane-1-carboxylic acid (ACC). Maximum rates of production are achieved about 12 hours after the addition of optimal amounts of indoleacetic acid (...

متن کامل

Transcriptome analysis of Japanese pear (Pyrus pyrifolia Nakai) flower buds transitioning through endodormancy.

The transcriptomes of endodormant and ecodormant Japanese pear (Pyrus pyrifolia Nakai 'Kosui') flower buds were analyzed using RNA-seq technology and compared. Among de novo assembly of 114,191 unigenes, 76,995 unigenes were successfully annotated by BLAST searches against various databases. Gene Ontology (GO) enrichment analysis revealed that oxidoreductases were enriched in the molecular func...

متن کامل

Isolation and characterization of four ethylene perception elements and their expression during ripening in pears (Pyrus communis L) with/without cold requirement.

Pear (Pyrus communis L.) are climacteric fruit: their ripening is associated with a burst of autocatalytic ethylene production. Some late pear cultivars, such as Passe-Crassane (PC) require a long (80 d) chilling treatment before the fruit will produce autocatalytic ethylene and ripen. As the cold requirement is linked to the capacity to respond to ethylene (or its analogue, propylene), three p...

متن کامل

Effect of girdling above the abscission zone of fruit on 'Bartlett' pear ripening on the tree.

Pear fruit usually soften and develop a melting texture when harvested at the mature green stage and ripened. The reason why the fruit does not fully ripen on the tree is unknown. To clarify this, our attention was directed to the continuous supply of assimilates and/or other substances into the fruit via phloem transport. To determine the effect of inhibiting phloem transport on fruit ripening...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 95 3  شماره 

صفحات  -

تاریخ انتشار 1991